

单音1.9W / 立体音300mW 功率放大器 低工作电压,无POP噪讯,待机功能

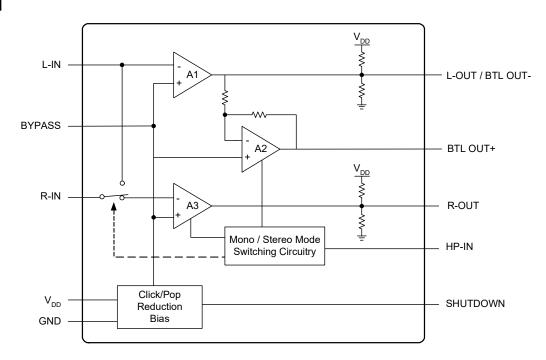
特性

- · 工作电压: 2.4V~6.5V。
- · 待机电流 18uA(5V)。
- THD+N=1% 之输出功率。

模式	负载	5V	3.3V	2.7V
	3Ω	2.1W	-	-
BTL	4Ω	1.9W	0.83W	500mW
	8Ω	1.2W	0.54W	350mW
SE	8Ω	0.3W	125mW	85mW
	32Ω	90mW	43mW	25mW

- 耳机侦测。
- · 稳定的增益,无POP噪讯。
- 待机与一般操作转换无延迟时间。

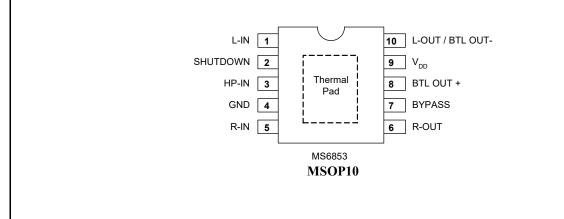
产品应用


- 桌面计算机声卡。
- 可携式音频装置。
- PDA o
- 掌上型游戏机。
- 电子字典。
- 相容IC: SSM2250, LM4853。
- · 封装种类 MSOP10(带有散热片)。

描述

MS6853是一颗低失真功率放大器,能驱动一个单音4奥姆喇叭(BTL模式),功率可达1.9瓦,或一组32奥姆立体声耳机(2*90毫瓦 SE模式)。能利用耳机侦测功能自动侦测BTL模式与SE模式。BTL结构不需要在输出端加上外部耦合电容。待机与一般操作转换无延迟时间。MS6853的增益取决于外部电阻。

MS6853适合于便携设备的优异特性,包含低工作电压、低功率消耗、待机模式,封装有MSOP10(带有散热片)。


方块图

脚位配置

符号	脚位	描述
L-IN	1	左声道输入
SHUTDOWN	2	待机控制脚位(TTL 输入准位)
HP-IN	3	耳机输入侦测脚位(Low: BTL模式,High: SE模式)
GND	4	接地
R-IN	5	右声道输入
R-OUT	6	右声道输出
BY PASS	7	参考电压(C _{BP} 需为0.1μF~10μF)
BTL OUT+	8	BTL正端输出
VDD	9	供给电源
L-OUT/BTL OUT-	10	左声道输出或BTL负端输出
	•	

订购信息

封装形式	产品编号	封装正印	运送包装
10-Pin MSOP (lead free)	MS6853MGTR	6853G	3.5k Units Tape and Reel
10-Pin MSOP (lead free)	MS6853MGU	6853G	80 Units Tube

遵循RoHS规范

最大容许规格

符号	参数	额定值	单位
VDD	工作电压	6.5	V
V_{ESD}	抗静电处理	-3000 to 3000	V
T_{STG}	储存温度	-65 to 150	$^{\circ}\mathbb{C}$
T_A	工作环境温度	-40 to 85	$^{\circ}\mathbb{C}$
$T_{\rm J}$	最大接合温度	150	$^{\circ}\mathbb{C}$
T_S	焊接温度(10秒)	260	$^{\circ}\mathbb{C}$
R_{THJA}	接面热阻(介质:空气) MSOP10 (附加散热片)	50	°C/W

5V电气特性

Ta = 25°C, $V_{DD}=5V$, f=1kHz, BW<30kHz.

符号	参数	测试条件	最小值	额定值	最大值	单位
ī	势大山	BTL模式,V _{IN} =0V, I _O =0A	-	2.4	-	mA
I_Q	静态电流	SE模式,V _{IN} =0V, I _O =0A	-	2.4	-	mA
I_{SD}	待机电流	待机模式,V _{SD} =V _{DD}		18		uA
V_{SDH}	待机控制 (高准位)		2.0	-	-	V
V_{SDL}	待机控制 (低准位)		-	-	0.8	V
V_{HPINH}	HP-IN 输入电压(高准位)	⊯与 /Ⅱ · 〉由厅	-	$0.75V_{DD}$	-	V
V _{HPINL}	HP-IN 输入电压(低准位)	滞后(Hysteresis)电压	-	$0.65V_{DD}$	-	V
CS	声道隔离度	SE模式,R _L =32Ω	100	110	-	dB
PSRR	电源涟波拒斥比	BTL模式,R _L =8Ω C _{BP} =1uF, f=100Hz	-	73	-	dB
PSKK		SE模式,R _L =32Ω C _{BP} =10uF, f=100Hz	-	64	-	dB
THD+N	当 ;此 ;	CE增于 D _220 (0W	-	-73	-68	dB
ותט⊤ו	总谐波失真	SE模式,R _L =32Ω, 60mW	-	0.022	0.04	%
S/N	信号噪声比	SE模式,A-weighting	90	95	-	dB
		BTL模式, $R_L = 3\Omega$ THD+N = 1%	-	2.1	-	W
	输出功率	BTL模式, $R_L = 4\Omega$ THD+N = 1%	-	1.9	-	W
Po		BTL模式, $R_L = 8\Omega$ THD+N = 1%	-	1.2	-	W
		SE模式, R_L =8 Ω THD+N = 1%	-	300m	-	W
		SE模式, $R_L = 32\Omega$ THD+N = 1%	-	90m	-	W

3.3V电气特性

Ta = 25°C, $V_{DD} = 3.3$ V, f = 1kHz, BW < 30kHz.

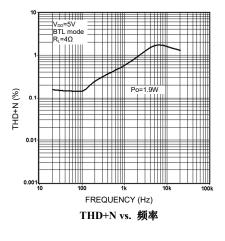
符号	参数	测试条件	最小值	额定值	最大值	单位
Т	静态电流	BTL模式,V _{IN} =0V, I _O =0A	-	2.1	-	mA
I_Q		SE模式,V _{IN} =0V, I _O =0A	-	2.1	-	mA
I_{SD}	待机电流	待机模式,V _{SD} =V _{DD}	-	12	-	uA
CS	声道隔离度	SE模式,R _L =32Ω	100	110	-	dB
PSRR	电源流冲担 尼比	BTL模式,R _L =8Ω C _{BP} =1uF, f=100Hz	-	73	-	dB
PSKK	电源涟波拒斥比	SE模式,R _L =32Ω C _{BP} =10uF, f=100Hz	-	67	-	dB
THD+N	总谐波失真	SE模式,R _L =32Ω,25mW	-	-70	-65	dB
IΠD⊤N				0.032	0.056	%
S/N	信号噪声比	SE模式,A-weighting	89	94	-	dB
		BTL模式, $R_L = 4 \Omega$ THD+N = 1%	-	0.83	-	W
Po	输出功率	BTL模式, $R_L = 8 \Omega$ THD+N = 1%	-	0.54	-	W
го		SE模式, $R_L = 8 \Omega$ THD+N = 1%	-	125m	-	W
		SE模式, $R_L = 32 \Omega$ THD+N = 1%	-	43m	-	W

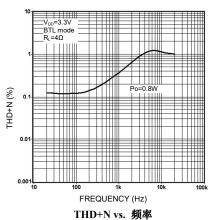
2.7V电气特性

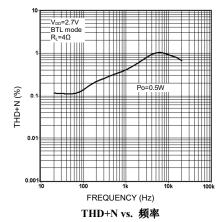
Ta = 25°C, V_{DD} =2.7V, f=1kHz, BW<30kHz.

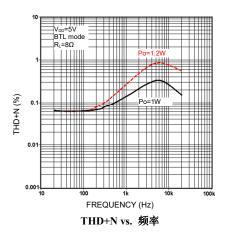
符号	参数	测试条件	最小值	额定值	最大值	单位
ī	静态电流	BTL模式,V _{IN} =0V, I _O =0A	-	2	-	mA
I_Q		SE模式,V _{IN} =0V, I _O =0A	-	2	-	mA
I_{SD}	待机电流	待机模式,V _{SD} =V _{DD}	-	7.5	-	uA
CS	声道隔离度	SE模式,R _L =32Ω	100	110	-	dB
DCDD	中源淬冲担它比	BTL模式,R _L =8Ω C _{BP} =1uF, f=100Hz	1	73	-	dB
PSRR	电源涟波拒斥比	SE模式,R _L =32Ω C _{BP} =10uF, f=100Hz	-	67	-	dB
THD+N	总谐波失真	SE模式,R _L =32Ω,15mW	-	-69	-64	dB
T⊓D⊤N		SE模式,KL-32 2,13HIW		0.036	0.063	%
S/N	信号噪声比	SE模式,A-weighting	87	92	-	dB
	输出功率	BTL模式, $R_L = 4 \Omega$ THD+N = 1%	-	0.51	-	W
Po		BTL模式, $R_L = 8 \Omega$ THD+N = 1%	-	0.35	-	W
ro		SE模式, $R_L = 8 \Omega$ THD+N = 1%	-	85m	-	W
		SE模式, $R_L = 32 \Omega$ THD+N = 1%	-	25m	-	W

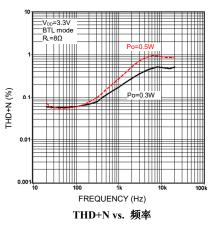
2.4V电气特性

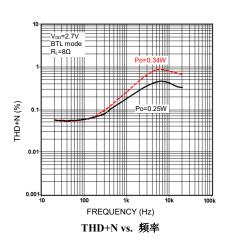

Ta = 25°C, V_{DD} =2.4V, f=1kHz, BW<30kHz.

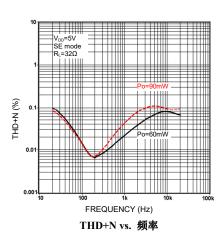

符号	参数	测试条件	最小值	额定值	最大值	单位
THD+N	当 M 3 世	CD	-	-68	-63	dB
	总谐波失真	SE模式,R _L =32Ω,15mW		0.0398	0.07	%
S/N	信号噪声比	SE模式,A-weighting	86	90	-	dB
	输出功率	BTL模式, $R_L = 4 \Omega$ THD+N = 1%	-	0.37	-	W
D _O		BTL模式, $R_L = 8 \Omega$ THD+N = 1%	ı	0.27	ı	W
Po		SE模式,R _L =8Ω THD+N=1%	-	67m	-	W
		SE模式, $R_L = 32 \Omega$ THD+N = 1%	-	21m	-	W

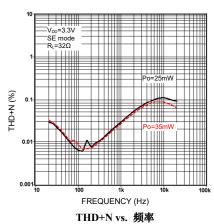


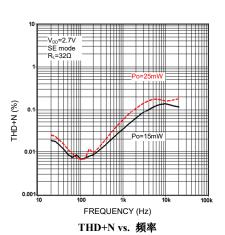

典型的特性曲线图

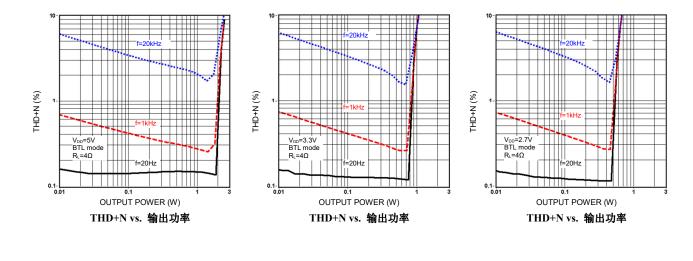

Ta = 25°C, BW < 30kHz.

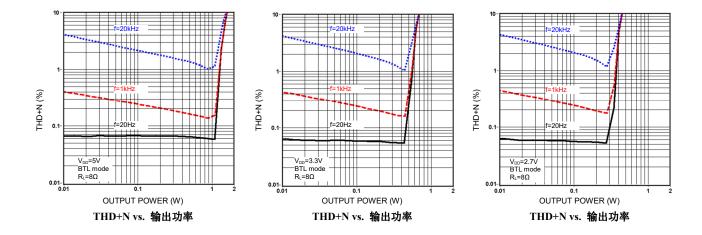


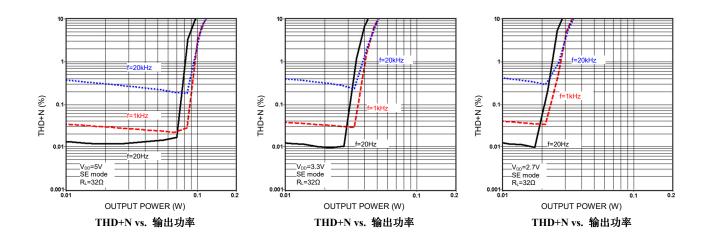


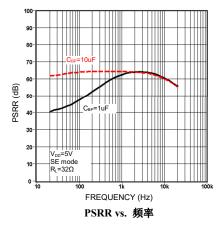


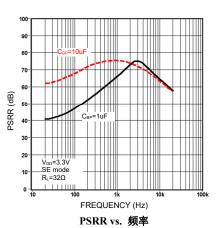


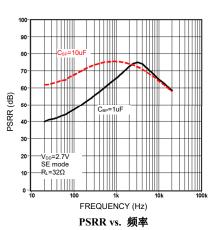


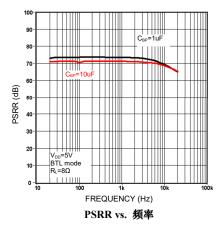


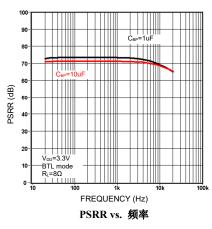


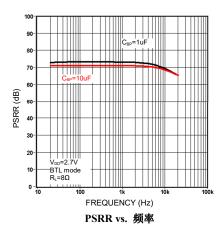


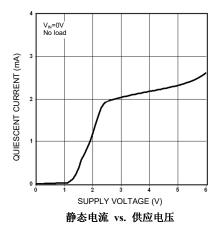


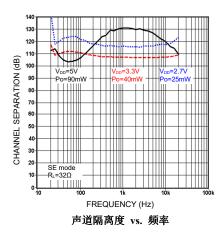


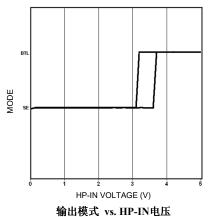


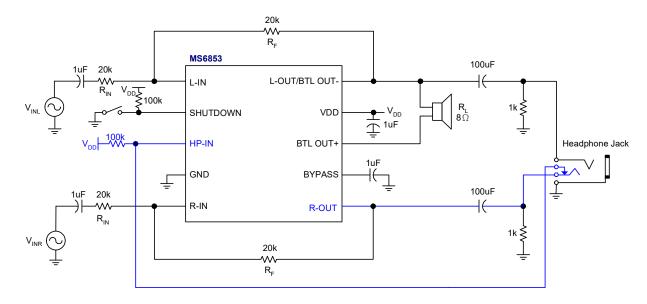


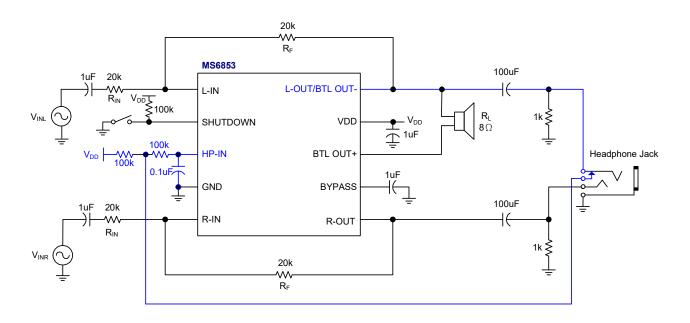











应用信息

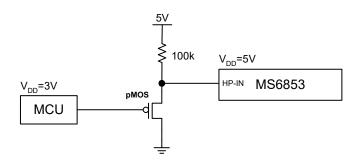
基本应用范例

DC Gain = $-R_F/R_{IN} = -1$

图一 音频放大器应用电路(HP-IN连接到右声道)

 $DC Gain = -R_F / R_{IN} = -1$

图二 音频放大器应用电路(HP-IN连接到左声道)


SE 模式与 BTL 模式操作

如方块图(第一页)与图一所示,在SE模式时,MS6853中的A1与A3为独立的放大器,其增益由外部电阻 R_F 与 R_N 决定, A_V = - R_F / R_N 。A2待机为高输出阻抗。

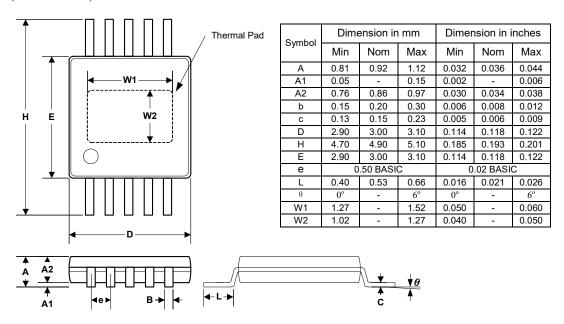
在BTL模式,A3待机至高阻抗状态,R-IN与L-IN在内部相接在一起,因此音频讯号 V_{INL} 与 V_{INR} 在A1的输入端相加。A2则由两个固定的内部电组构成 A_V =-1之闭回路增益。A1与A2的输出即用来驱动单音BTL输出。

HP-IN 操作

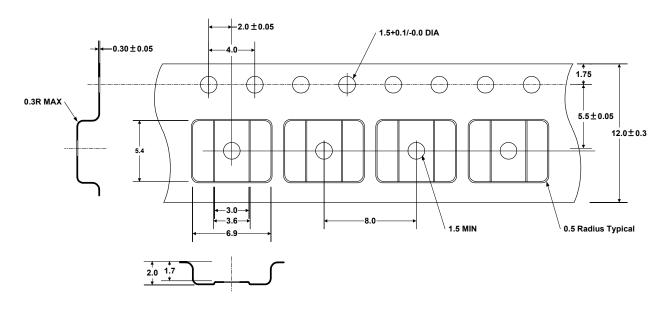
MS6853可以很容易的切换单音BTL模式与立体音SE模式。两种模式的切换取决于耳机控制脚位HP-IN。当耳机插入耳机座时,HP-IN提升至高准位至SE模式,而没有接上耳机时,HP-IN为低准位,工作在BTL模式。此处需注意,HP-IN输入是一个迟滞电压,控制范围是 $0.65V_{DD}\sim0.75V_{DD}$,如果系统之准位不符合,则需作一简单准位位移电路来解决此问题。以下图为例,MS6853电源 $V_{DD}=5V$,即HP-IN控制范围为3.25V($0.65V_{DD}$)到3.75V($0.75V_{DD}$),MCU工作电压为3V,因此需加上一准位位移电路以准确控制MS6853之模式转换。

散热片的使用方法

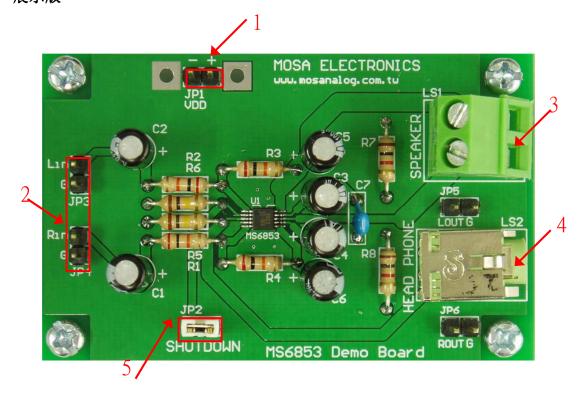
MS6853封装具有底部散热片。散热片必须焊于PC板的接地,使IC产生的热能传导至PC板的裸铜面,增加的散热面积与周围进行热对流有效提高散热效率。


PC板上层若无裸铜面,则可以于散热片底部增加9个直径13mil的贯孔,将热传导至PC板底层,若贯孔充满锡膏,可增加热传导效率。

版本 7 10/13 www.mosanalog.com


封装尺寸

MSOP10 (Thermal Pad)


卷带式包装 (TAPE & REEL) (单位:mm)

MSOP10

展示版

功能描述

- 1. 电源输入
- 输入电压范围为2.4V~6.5V。
- 2. 输入端

连接至音频讯号。.

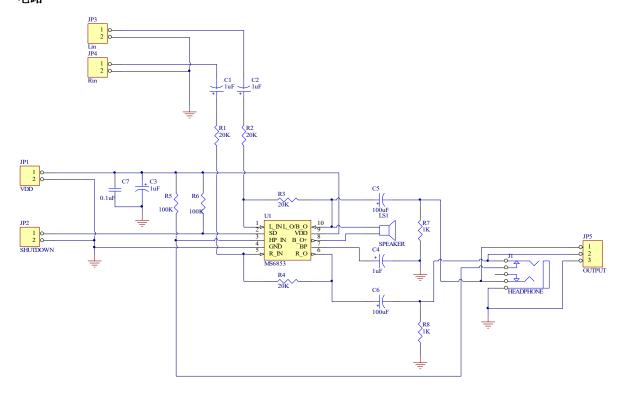
3. 扬声器输出

连接至8奥姆或4奥姆之扬声器。

4. 耳机座

使用3.5mm 的32奥姆耳机

5. 待机模式控制


当短路环短路时系统为工作模式, 当短路环开路时则进入待机模式。

SE 模式与 BTL 模式操作

当耳机接上耳机座系统自动切至SE模式,而耳机座未接上耳机时则为BTL模式。

电路

